Vector meson production and $\eta^{\prime} N$-> $\eta^{\prime} N$ scattering

E. Oset, and A. Ramos

-- Meson baryon interaction with chiral Lagrangians. Introducing the η^{\prime} --Vector meson Baryon interaction and the local hidden gauge theory --The interplay of vector meson-baryon and pseudoscalar mesonbaryon states. Particular case of the $\eta^{\prime} N$.
-- Results for different reactions involving η^{\prime}.

Chiral Lagrangian for pseudoscalar meson- baryon interaction

$$
\begin{gathered}
\mathcal{L}_{1}^{(B)}=<\bar{B} i \gamma^{\mu} \frac{1}{4 f^{2}}\left[\left(\Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi\right) B-B\left(\Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi\right)\right]> \\
\Phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right)
\end{gathered}
$$

Octet X Octet

$$
B=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right)
$$

Introducing the singlet $\operatorname{diag}\left(\eta_{1} / \sqrt{3}, \eta_{1} / \sqrt{3}, \eta_{1} / \sqrt{3}\right)$
Because of the structure $\quad \Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi \quad$ the singlet does not contribute
$\eta-\eta^{\prime}$ mixing

$$
\begin{array}{rlr}
\eta & =\cos \theta_{P} \eta_{8}-\sin \theta_{P} \eta_{1} & \theta_{P}=-14.34^{\circ} \\
\eta^{\prime} & =\sin \theta_{P} \eta_{8}+\cos \theta_{P} \eta_{1} &
\end{array}
$$

$$
\begin{gathered}
T=[1-V G]^{-1} V \\
V_{i j}=-C_{i j} \frac{1}{4 f_{i} f_{j}}\left(2 \sqrt{s}-M_{i}-M_{j}\right)\left(\frac{M_{i}+E_{i}}{2 M_{i}}\right)^{1 / 2}\left(\frac{M_{j}+E_{j}}{2 M_{j}}\right)^{1 / 2} \\
G_{l}=i 2 M_{l} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{(P-q)^{2}-M_{l}^{2}+i \epsilon} \frac{1}{q^{2}-m_{l}^{2}+i \epsilon} \\
=\frac{2 M_{l}}{16 \pi^{2}}\left\{a_{l}(\mu)+\ln \frac{M_{l}^{2}}{\mu^{2}}+\frac{m_{l}^{2}-M_{l}^{2}+s}{2 s} \ln \frac{m_{l}^{2}}{M_{l}^{2}}+\right. \\
\\
\quad+\frac{\bar{q}_{l} l}{\sqrt{s}}\left[\ln \left(s-\left(M_{l}^{2}-m_{l}^{2}\right)+2 \bar{q} l \sqrt{s}\right)+\ln \left(s+\left(M_{l}^{2}-m_{l}^{2}\right)+2 \bar{q} l \sqrt{s}\right)\right. \\
\left.\left.\quad-\ln \left(-s+\left(M_{l}^{2}-m_{l}^{2}\right)+2 \bar{q} l \sqrt{s}\right)-\ln \left(-s-\left(M_{l}^{2}-m_{l}^{2}\right)+2 \bar{q} l \sqrt{s}\right)\right]\right\}
\end{gathered}
$$

channel (threshold)	Model A [Eq. (8)] $[\mathrm{fm}]$
$(\pi N)_{I=1 / 2}(1077)$	$0.179 \mathrm{fm}=0.125 m_{\pi}^{-1}$
$(\pi N)_{I=3 / 2}(1077)$	$-0.121 \mathrm{fm}=-0.085 m_{\pi}^{-1}$
$\pi^{-} p(1078)$	0.079
$\pi^{-} n(1079)$	-0.123
$\pi^{0} p(1073)$	-0.023
$\eta p(1486)$	$0.195+\mathrm{i} 0.141$
	(0.241)
$\eta^{\prime} p(1896)$	$-0.0078+\mathrm{i} 0.025$
	(0.026)

$\left|a_{\eta^{\prime} N}\right| \sim 0.1 \mathrm{fm} \quad$ P. Moskal et al., Phys. Lett. B 482, 356 (2000)

FIG. 9. Cross section for $\pi^{+} n \rightarrow p \eta^{\prime}$; the chargesymmetric data and $\pi^{+} d$ data from other experiments are also shown (Ref. 27).

M. Nanova, V. Metag

η ' transparency ratio compared with theoretical calculations A.Ramos and E. Oset $T_{A}=\frac{\sigma_{\gamma A \rightarrow V X}}{A \sigma_{\gamma N \rightarrow V X}} \quad \Rightarrow$ in-medium width:

comparison to data $\Gamma\left(\rho_{0},<\left|\overrightarrow{\mathrm{p}}_{\mathrm{n}}\right|>\approx 0.9 \mathrm{GeV} / \mathrm{c}\right) \approx 25-30 \mathrm{MeV}$
η ' is broadened in the medium
$\Rightarrow \quad \sigma_{\eta^{\prime} N}=\frac{\Gamma_{\text {inel }}}{\rho \cdot \beta \cdot \hbar \cdot c}=14 \mathrm{mb}$
But this could come also from
η^{\prime} absorption by two nucleons.

Hidden gauge formalism for vector mesons, pseudoscalars and photons Bando et al. PRL, 112 (85); Phys. Rep. 164, 217 (88)

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}^{(2)}+\mathcal{L}_{I I I} \tag{1}
\end{equation*}
$$

with

$$
\begin{array}{r}
\mathcal{L}^{(2)}=\frac{1}{4} f^{2}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+\chi^{\dagger} U\right\rangle \\
\mathcal{L}_{I I I}=-\frac{1}{4}\left\langle V_{\mu \nu} V^{\mu \nu}\right\rangle+\frac{1}{2} M_{V}^{2}\left\langle\left[V_{\mu}-\frac{i}{g} \Gamma_{\mu}\right]^{2}\right\rangle \tag{3}
\end{array}
$$

where $\langle\ldots\rangle$ represents a trace over $S U(3)$ matrices. The covariant derivative is defined by

$$
\begin{equation*}
D_{\mu} U=\partial_{\mu} U-i e Q A_{\mu} U+i e U Q A_{\mu} \tag{4}
\end{equation*}
$$

with $Q=\operatorname{diag}(2,-1,-1) / 3, e=-|e|$ the electron charge, and A_{μ} the photon field. The chiral matrix U is given by

$$
\begin{equation*}
U=e^{i \sqrt{2} \phi / f} \tag{5}
\end{equation*}
$$

$$
\phi \equiv\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \tag{6}\\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right), \quad V_{\mu} \equiv\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & K^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi
\end{array}\right)_{\mu}
$$

In $\mathcal{L}_{I I I}, V_{\mu \nu}$ is defined as

$$
\begin{equation*}
V_{\mu \nu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}-i g\left[V_{\mu}, V_{\nu}\right] \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{\mu}=\frac{1}{2}\left[u^{\dagger}\left(\partial_{\mu}-i e Q A_{\mu}\right) u+u\left(\partial_{\mu}-i e Q A_{\mu}\right) u^{\dagger}\right] \tag{10}
\end{equation*}
$$

with $u^{2}=U$. The hidden gauge coupling constant g is related to f and the vector meson mass (M_{V}) through

$$
\begin{gather*}
g=\frac{M_{V}}{2 f}, \tag{11}\\
\mathcal{L}_{V \gamma}=-M_{V}^{2} \frac{e}{g} A_{\mu}\left\langle V^{\mu} Q\right\rangle \\
\mathcal{L}_{V \gamma P P}=e \frac{M_{V}^{2}}{4 g f^{2}} A_{\mu}\left\langle V^{\mu}\left(Q \phi^{2}+\phi^{2} Q-2 \phi Q \phi\right)\right\rangle \\
\mathcal{L}_{V P P}=-i \frac{M_{V}^{2}}{4 g f^{2}}\left\langle V^{\mu}\left[\phi, \partial_{\mu} \phi\right]\right\rangle \\
\mathcal{L}_{I I I}^{(c)}=\frac{g^{2}}{2}\left\langle V_{\mu} V_{\nu} V^{\mu} V^{\nu}-V_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle, \quad \mathcal{L}_{I I I}^{(3 V)}=i g\left\langle\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right\rangle,
\end{gather*}
$$

Extension to the baryon sector

$$
\begin{aligned}
\mathcal{L}_{B B V}=-\frac{g}{2 \sqrt{2}}\left(\operatorname { t r } \left(\overline { B } \gamma _ { \mu } \left[V^{\mu}\right.\right.\right. & \left., B]+\operatorname{tr}\left(\bar{B} \gamma_{\mu} B\right) \operatorname{tr}\left(V^{\mu}\right)\right) \\
& \text { Vector propagator } 1 /\left(\mathrm{q}^{2}-\mathrm{M}_{\mathrm{v}}{ }^{2}\right)
\end{aligned}
$$

In the approximation $\mathrm{q}^{2} / \mathrm{M}_{\mathrm{v}}{ }^{2}=0$ one recovers the chiral Lagrangians
Weinberg-Tomozawa term. For consistency, for vectors we take $q / M_{v}=0$

New: A. Ramos, E. O. Eur. Phys. JA, 2010

Kolomeitsev et al

New: J. Vijande, P. Gonzalez. E.O PRC,2009
Sarkar, Vicente Vacas, B.X.Sun, E.O Eur. Phys. J. A, 2010

Vector octet - baryon octet interaction

$$
\begin{aligned}
\mathcal{L}_{I I I}^{(3 V)} & =i g\left\langle V^{\nu} \partial_{\mu} V_{\nu} V^{\mu}-\partial_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle \\
& =i g\left\langle V^{\mu} \partial_{\nu} V_{\mu} V^{\nu}-\partial_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle \\
& =i g\left\langle\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V_{\mu} V^{\mu}\right) V^{\nu}\right\rangle
\end{aligned}
$$

$$
\mathcal{L}_{V P P}=-i g \operatorname{tr}\left(\left[P, \partial_{\mu} P\right] V^{\mu}\right)
$$

$$
B=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right)
$$

V^{v} cannot correspond to an external vector. Indeed, external vectors have only spatial components in the approximation of neglecting three momenta, $\varepsilon^{0}=\mathrm{k} / \mathrm{M}$ for longitudinal vectors, $\varepsilon^{0}=0$ for transverse vectors. Then ∂_{v} becomes three momentum which is neglected. \rightarrow V^{v} corresponds to the exchanged vector. \rightarrow complete analogy to VPP Extra $\varepsilon_{\mu} \varepsilon^{\mu}=-\varepsilon_{i} \varepsilon_{i}$ but the interaction is formally identical to the case of $\mathrm{PB} \rightarrow \mathrm{PB}$ In the same approximation only γ^{0} is kept for the baryons \rightarrow the spin dependence is only $\varepsilon_{i} \varepsilon_{i}$ and the states are degenerate in spin $1 / 2$ and $3 / 2$

$$
V_{i j}=-C_{i j} \frac{1}{4 f^{2}}\left(k^{0}+k^{\prime 0}\right) \overrightarrow{\epsilon \epsilon}
$$

We solve the Bethe Salpeter equation in coupled channels Vector-Baryon octet.

$$
\mathrm{T}=(1-\mathrm{GV})^{-1} \mathrm{~V}
$$

with G the loop function of vector-baryon
Apart from the peaks, poles are searched In the second Riemann sheet and pole positions and residues are determined.

The G function takes into account the mass distribution of the vectors (width). Decay into pseudoscalar-baryon not yet considered.

VEctor mesons in $\eta^{\prime N}$ interaction

Normal VPP coupling

$$
\mathscr{L}_{p v o}=-i g\left\langle\left[p, \partial_{\mu} p\right] v^{\mu}\right\rangle
$$

Anomalous VVP coupling

$$
\left.\alpha_{V V P}=\frac{G}{\sqrt{2}} f^{\mu \nu \alpha \beta}<\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} p\right\rangle
$$

- Normal coupling has no coutrization for singlet
- Anomalous coughing gives contisution for singlet

In addition we conniles $V B+V B$ interaction

$t_{V B \rightarrow V B}$
\downarrow
contains reconamces
close to $p^{\prime} N$ threshold
B. Boratoy, Phys. Rev D 61 (1999) 014011

There is an extra term for coughing of the singlet 176 baryons

$$
\mathscr{L}_{\phi B}=\lambda_{1} \eta_{0}^{2} \quad(-2 M\langle\bar{B} B\rangle)
$$

This leads to a scattering amplitude

$$
t_{0, i j}=\frac{\alpha}{4 f^{2}} 2 m_{\eta}, \tilde{Q}_{i j}
$$

$-\sin \Theta_{P} \cos \Theta_{P}$
$\eta^{\prime} N \quad-\sin \Theta_{p} \cos \Theta P$

Empirical data demand alpha around -0.1

Summary:

The $\eta^{\prime} \mathrm{N}$ interaction sets new theoretical challenges
The mixing with vector baryon states that generate a resonance N^{*} with spin $1 / 2^{-}$or $3 / 2^{-}$around 1900 MeV has been proved.

Pure contribution of the singlet, beyond the Weinberg-Tomozawa term has also been shown to be very important.

Puzzle remaining, the empirical data of the scattering length and the "in principle" data on inelastic cross section from the transparency ratio cannot be made compatible.

Signal of a strong η^{\prime} NN -> NN absorption mechanism? Missing mechanisms that increase the inelastic cross section without modifying the elastic one? Maybe but optical theorem relates them.....

Improvements needed to account for the width:

This work allows one to introduce PB and VB in the same set of coupled channels:
Technically not trivial since the exchanged pseudoscalar could be placed on shell and has pathologies to be used as a potential.

Box diagran no problem:
We separate $L=0$ and $L=2$ contributions

Put $\mathrm{L}=0$ part, V_{PB}, in the coupled channels defining
$\operatorname{Im} \mathrm{V}_{\text {box }}(\mathrm{L}=0)=\mathrm{V}_{\mathrm{PB}} \operatorname{Im} \mathrm{G}_{\mathrm{PB}} \mathrm{V}_{\mathrm{PB}}$
Box with $\mathrm{L}=2$ and intermediate decuplet added to $\mathrm{VB} \rightarrow \mathrm{VB}$

Since the $N^{*}(1650)$ appears generated from $V N$ (mostly ρN), and $N^{*}(1535)$ from PB (mostly $K \wedge, K \Sigma$) hopes appear to extend theoretically the theory to higher energies for πN scattering.
Could parameters of the $N^{*}(1535)$ become of natural size?
This could solve a problem about the nature of the $N^{*}(1535)$ stated by Hyodo Jido, Hosaka.

